
1 

Detrending crop yield data for spatial visualization of drought 1 

impacts in the United States, 1895-2014 2 

Junyu Lu 

, Gregory J. Carbone, Peng Gao 3 

Department of Geography, University of South Carolina, Columbia, South Carolina 29208, United States 4 

 5 

Abstract: Historical drought events have had severe impacts on United States agriculture, but 6 

attempts to quantify and compare these impacts across space and time have been challenging 7 

because of the nonlinear and non-stationary nature of the crop yield time series. Here, we address 8 

this challenge using long-term state- and county-level corn yield data from 1895 to 2014. We 9 

apply and compare six trend simulation models – simple linear regression, second order 10 

polynomial regression, centered moving average, locally weighted regression, spline smoothing, 11 

and empirical mode decomposition – to simulate the nonlinear trend, and two decomposition 12 

models – an additive decomposition model and a multiplicative decomposition model – to 13 

remove the nonlinear trend from the yield time series. Our comparison of each method evaluates 14 

their respective advantages and disadvantages with respect to applicability across time and space, 15 

efficiency, and robustness. We find that a locally weighted regression model, coupled with a 16 

multiplicative decomposition model, is the most appropriate data self-adaptive detrending 17 

method. Detrended crop yield minus one represents the percentage lower or higher than normal 18 

yield conditions, termed “crop yield anomaly”. We then apply this detrending method and 19 

perform correlation analysis to show the quantitative relationship between state-level corn yield 20 
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anomalies and multiple drought indices. We find that the 3-month Standardized Precipitation 21 

Index (SPI) in August and Palmer Z-index in July correlate most closely with corn yield 22 

anomalies. This correlation is higher east of the 100˚ W meridian, where irrigation is not as 23 

extensively used. Finally, we show how the detrending process allows spatial visualization of 24 

drought impact on corn yield in the US using gridded August 3-month SPI values with examples 25 

from six major droughts on corn yields. Our focus on comparing detrending methods produces a 26 

methodology that can aid analysis of agricultural yield for both empirical and modeling studies 27 

connecting environmental and climate conditions to crop productivity. 28 

Keywords: Detrending method; Crop yield anomaly; Locally weighted regression model; 29 

Drought index; Gridded Standardized Precipitation Index 30 

 31 

1. Introduction 32 

Drought is a devastating, recurring, and widespread natural hazard that affects natural habitats, 33 

ecosystems, and economic and social sectors, such as agriculture, transportation, industry, and 34 

urban water supply (Heim, 2002). The magnitude of drought impacts depends on various factors, 35 

including timing, duration, and severity, as well as a region’s vulnerability, sensitivity, and 36 

adaptive capacity (Wheaton et al., 2008), which makes quantification of overall drought impacts 37 

difficult. Within the agricultural sector, droughts reduce soil-water availability, affect water and 38 

soil quality, increase risks of wildfire and pest infestation, and contribute to crop failures and 39 

pasture losses. Droughts can severely affect crop growth and reduce yield, threatening our food 40 

security. Despite tremendous improvements in technology and in crop yield potential, food 41 

production and food security remain highly dependent on weather and climate variation 42 

(Rosenzweig et al., 2001). 43 
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Droughts have had large economic impacts on US agriculture. From 1980 to 2014 alone, CPI 44 

(Consumer Price Index) - adjusted drought losses are estimated at $206B (NOAA, 2016). The 45 

1930s Dust Bowl (three major waves: 1934, 1936, and 1939-1940), with its sustained deficient 46 

rainfall, high temperatures, and high winds, reduced the yield of wheat and corn by as much as 47 

50% (NOAA, 2003; Warrick, 1984). The 1950s drought reached its greatest spatial extent in 48 

1954, when crop yields in some areas dropped as much as 50% (NOAA, 2003). The 1987-1989 49 

drought caused estimated total losses of $39B in energy, water, ecosystems, and agriculture 50 

(Riebsame et al., 1991) and resulted in about a 30% reduction in US corn production 51 

(Rosenzweig et al., 2001). About 80 percent of agricultural land experienced drought in 2012, 52 

making the 2012 drought the most extensive since the 1950s (USDA, 2013). The 2012 drought 53 

resulted in widespread harvest failures of the corn, sorghum, and soybean and caused agriculture 54 

damage up to be $30B (NOAA, 2016). Such studies have chronicled total agricultural losses 55 

during individual event. However, few studies have compared these losses across events because 56 

of challenges associated with changing technology and other non-climatic influences on yield. 57 

The impact of an extreme weather event on agriculture depends not only on the severity of the 58 

event itself, but also on the time of the event and the vulnerability of the natural systems that 59 

experience it (IPCC, 2012; Lesk et al., 2016; van der Velde et al., 2012). Similar extreme 60 

weather could have differing outcomes depending on the crop development stages and the 61 

vulnerability of the exposed system (e.g., irrigation and technology would mitigate such 62 

vulnerability to drought) (Lesk et al., 2016; van der Velde et al., 2012). Thus, identifying the 63 

spatiotemporal variation of the drought impacts on agriculture and constructing a quantitative 64 

relationship between drought and agriculture losses could provide policy makers and 65 
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stakeholders with scientific information regarding which agricultural areas are most vulnerable 66 

and sensitive to drought. 67 

Quantifying and comparing drought losses across time and space are challenging because crop 68 

yields and productions are controlled by many factors, including scientific and technological 69 

advances (e.g., improvements in plant genetics, fertilizer, pesticides, and irrigation facilities), as 70 

well as weather and climate factors. The overall trend is of increasing yield, mainly caused by 71 

technological advances; the high-frequency fluctuations are mainly caused by weather and 72 

climate factors (Appendix A, Fig. A1). All of these factors make long-term crop yield data 73 

inherently nonlinear and non-stationary (varying mean and standard deviation). This renders 74 

comparison and spatial visualization of drought impact on agriculture difficult. For example, the 75 

1950s droughts (peaking in 1954) and the 2012 drought are two historical major events. It is 76 

difficult to quantitatively extract and compare the impacts of these two droughts on agriculture 77 

merely from the original crop yield maps because of yield differences caused by technological 78 

advances and spatial patterns of agricultural production (Appendix A, Fig. A2). Modeling and 79 

spatial visualization of drought impacts on agriculture require appropriate distinctions between 80 

the high frequency fluctuations caused by the climate variability and the long-term trend caused 81 

by technological factors. This study explores and introduces a process of identifying the long-82 

term trend, appropriately detrending yield data, and separating out a meaningful climate effect on 83 

crop yield. 84 

Detrending technology statistically removes the long-term mean changes from the time series. 85 

The trend should be removed before other basic applications are implemented, such as 86 

computing the correlation function (Wu et al., 2007). Most previous studies detrended crop yield 87 

using a specific predetermined function, such as a simple linear regression model or a second 88 
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order polynomial regression model against time. For example, Quiring and Papakryiakou (2003) 89 

applied a simple linear regression model to detrend wheat yield data; the resulting residuals were 90 

used to determine the most appropriate drought indices for measuring agricultural drought in the 91 

Canadian prairies. Trnka et al. (2007) applied a second order polynomial regression model to 92 

detrend yield data to evaluate the effect of drought on the spring barley crop. Goldblum (2009) 93 

applied a simple linear regression model to detrend soybean yield and a quadratic regression 94 

model to detrend corn yield. Residuals from a regression line served as estimates of detrended 95 

crop yield to examine the impacts of climate variability. Hlavinka et al. (2009) applied second 96 

order polynomials to capture long-term crop yield trend and used residuals to describe yield 97 

response to drought in the Czech Republic. Mishra and Cherkauer (2010) used a best-fit least 98 

squares linear regression method to detrend crop yield, identifying drought impacts during three 99 

crop growth periods in Illinois and Indiana. 100 

However, the simple linear regression model and second order polynomial regression model 101 

used in previous studies are not suitable to detrend long-term crop yield in this study. Such 102 

predetermined functions cannot accommodate nonlinearity seen in the crop yield time series, as 103 

illustrated by data from five select states (Appendix A, Fig. A1). Additionally, the detrending 104 

process must be done across space, involving yield data for dozens of states and thousands of 105 

counties. Predetermined functions also lack sufficient flexibility and capability to remove many 106 

different nonlinear trends from the data, because trends vary across space (Appendix A, Fig. A1). 107 

Furthermore, potential future climate changes in mean and variability, combined with 108 

technological changes, could introduce additional nonlinearity and non-stationarity to crop yield 109 

data in the long-term. Thus, a data self-adaptive detrending method that can automatically follow 110 

the underlying pattern of the nonlinear crop yield time series is needed. 111 
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This study compares six trend simulation methods and two decomposition models, and evaluates 112 

their respective advantages and disadvantages with respect to applicability across time and space, 113 

efficiency, and robustness. We explore an appropriate data self-adaptive detrending approach 114 

that can automatically simulate the long-term nonlinear and non-stationary yield trend caused 115 

mainly by technology advances and thus remove the trend to isolate interannual fluctuations 116 

caused mainly by weather and climate factors. By applying this approach to detrend and 117 

standardize the corn yield data, we construct a quantitative relationship between drought and 118 

agriculture losses and compare drought impacts on corn yield across time and space through 119 

spatial visualization from 1895 to 2014 by highlighting six major historical drought events. 120 

 121 

2. Data source and methodology 122 

2.1 Agriculture data 123 

Long-term agriculture statistics were obtained from USDA’s National Agricultural Statistics 124 

Service (NASS), which maintains a comprehensive database of land use, farm income, crop 125 

production and yield, livestock, and commodity prices at national, regional, state, and county 126 

levels (USDA, 2014). Since the mid-1950’s, NASS estimates have been derived from area frame 127 

surveys which identify cultivated areas from remotely-sensed imagery, followed by stratified 128 

sampling in random field locations. This method is complemented by farmer interviews within 129 

regions of highest cultivation. NASS collects information from several sources, of which the 130 

sample surveys are the most important. Further detail on sampling methods and uncertainty 131 

analysis is available elsewhere (Davies, 2009; Prince et al., 2001; USDA, 1983; USDA, 1999; 132 

USDA, 2006; USDA, 2012; USDA, 2016). We examined corn yield because corn is the most 133 

widely produced crop in the US. We compared detrending methods and demonstrated spatial 134 
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visualizations of drought impacts on corn yield from 1895 to 2014 for 48 states and 2398 out of 135 

3108 counties with at least 30-year corn yield data across the conterminous United States.  136 

2.2 In-situ drought indices 137 

State-level drought indices—including the monthly Palmer Drought Severity Index (PDSI), 138 

Palmer Hydrological Drought Index (PHDI), Palmer Z-index, Modified Palmer Drought Severity 139 

Index (PMDI), 1-month SPI (Standardized Precipitation Index), 2-month SPI, 3-month SPI, 6-140 

month SPI, 9-month SPI, 12-month SPI, and 24-month SPI— from 1895 to 2015 were obtained 141 

from NOAA’s National Centers for Environmental Information (ftp://ftp.ncdc.noaa.gov/). NCEI 142 

employs a climatologically-aided interpolation method to interpolate station data to composite 143 

grids; climate divisional and state values were computed as the area-weighted average of the 144 

composite gridpoints (Vose et al., 2014). 145 

PDSI was developed by Palmer (1965), which is based on the supply-and-demand concept of the 146 

water balance equation by using precipitation, temperature and available water content (AWC) 147 

of the soil. It has three variations for different applications: Palmer Z index (Palmer, 1965) is 148 

used to measure short-term departure of moisture from normal; PHDI (Palmer, 1965) is used for 149 

water supply monitoring; and PMDI (Heddinghaus and Sabol, 1991) is designed for real-time 150 

operational purposes. The categories of drought intensity for PDSI, PHDI and PMDI are: 0 to -151 

0.49 (near normal), -0.50 to -0.99 (incipient drought), -1.00 to -1.99 (mild drought), -2.00 to -152 

2.99 (moderate drought), -3.00 to -3.99 (severe drought), and ≤ -4.00 (extreme drought). The 153 

categories of drought intensity for Palmer Z index are: 0 to -1.24 (near normal), -1.25 to -1.99 154 

(mild to moderate drought), -2.00 to -2.74 (severe drought), and ≤ -2.75 (extreme drought). SPI 155 

was developed by McKee et al. (1993) to quantify precipitation deficit for different time scales. 156 
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More information about drought indices can be found in the reviews of Heim (2002), Mishra and 157 

Singh (2010), and WMO and GWP (2016). 158 

We calculated 4-km gridded SPI values across the conterminous United States using 4-km 159 

PRISM (Parameter-elevation Relationships on Independent Slopes Model) precipitation dataset 160 

(Daly et al., 2008) from 1895 to 2014 for the spatial visualization purpose in section 3.4. SPI 161 

values were computed following the method of McKee et al. (1993). For each pixel, monthly 162 

precipitations can be accumulated into different time scales (e.g. 1-month, 2-month, 3-month, 6-163 

month, 9-month, 12-month, and 24-month). For zero precipitation accumulation, the probability 164 

was computed using the frequency of zero precipitation accumulation. For non-zero precipitation 165 

accumulation, a two-parameter gamma distribution was fitted by using the maximum likelihood 166 

estimation (MLE) method. Then, the probability of zero and non-zero precipitation accumulation 167 

together was transformed into the quantile of a normal distribution with mean of zero and 168 

standard deviation of one by using inverse normal (Gaussian) distribution function. The resulting 169 

value is SPI. The different time scales for SPI are computed to address various types of drought: 170 

the shorter time scales are appropriate for meteorological drought and agricultural drought, the 171 

longer time scales are for hydrological drought (Heim, 2002; McKee et al., 1993). McKee et al. 172 

(1993) has defined drought intensities for values of the SPI into four categories: 0 to -0.99 (mild 173 

drought), -1.00 to -1.49 (moderate drought), -1.50 to -1.99 (severe drought), and ≤  -2.00 174 

(extreme drought). 175 

2.3 Detrending method 176 

We compared six different detrending methods for removing the increasing trend from corn yield. 177 

The first step of detrending is to simulate the trend inherent in the data. The trend simulation 178 

methods included a simple linear regression model, a second order polynomial regression model, 179 
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a moving average model, a locally weighted regression model (LOWESS), a smoothing spline 180 

model, and an empirical mode decomposition model (EMD). After trend simulation, we applied 181 

and compared two decomposition models to detrend the data. These methods were applied 182 

separately for each state and each county. All data processing and spatial visualization used the R 183 

programming language and its related packages. 184 

2.3.1 Trend simulation method 185 

2.3.1.1 Simple linear regression model 186 

A simple linear regression model is the most commonly used statistical method to identify a 187 

linear trend. By visual inspection, if the trend is linear, a simple linear regression fitting would be 188 

sufficient to simulate the trend. The resulting trend is a straight line fitted to the data. Simple 189 

linear regression model can be fitted against time using the method of least squares. tYt 10    190 

Where Yt is the crop yield at time t; time t is the predictor; and β0 and β1 are the coefficients. 191 

2.3.1.2 Second order polynomial regression model 192 

A second order polynomial regression model is also commonly used in trend simulation 193 

(Goldblum, 2009; Hlavinka et al., 2009; Trnka et al., 2007). A second order polynomial 194 

regression model is appropriate if a quadratic trend present in the crop yield time series. This 195 

model accounts for the positive trend in annual crop yield that occurs because of increasing 196 

fertilization, plant genetics, and technological innovation and then declines because of economic 197 

transformation in the farming sector (Chloupek et al., 2004; Hlavinka et al., 2009). A second 198 

order polynomial regression model can be fitted against time using the method of least square. 199 

2

210 ttYt    200 

Where Yt is the crop yield at time t; time t is the predictor; and β0, β1, and β2 are the coefficients. 201 

2.3.1.3 Moving average model 202 
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Moving average models can be used to smooth the irregular roughness and high-frequency 203 

variation to identify overall pattern and trend in a time series. The moving average model is data 204 

self-adaptive. Unlike linear regression models, moving average models do not provide a specific 205 

model, but they detect local trends that simple linear regression models cannot. There are two 206 

simple kinds of moving average models: backward moving average (BMA) models, wherein all 207 

values for previous years are averaged for specific time spans, and centered moving average 208 

(CMA) models, wherein the values are averaged both before and after the current time. BMA 209 

models introduce an artificial time shift between the original data and the moving average 210 

(Bashan et al., 2008). CMA models are preferred because they eliminate this artificial effect. As 211 

the time span of moving average increases, the trend becomes smoother. Here, CMAs at time 212 

spans of 5 years, 10 years, 15 years, and 20 years are calculated to identify the trend. Formulas 213 

for each time span are as follows: 214 

5 years: 2112
5

1

5

1

5

1

5

1

5

1
  tttttt YYYYYmY  215 
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15 years:

 





7

715

1

j

jtt YmY  217 

20 years: 10

9
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1
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1

40

1
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j

jttt YYYmY  218 

Where Yt is the original crop yield at time t; and mYt is the moving averaged crop yield at time t. 219 

2.3.1.4 Locally weighted regression model 220 

The locally weighted regression model (LOWESS) is a widely used non-parametric regression 221 

smoothing and memory-based method proposed by Cleveland (1979) and further developed by 222 

Cleveland and Devlin (1988). LOWESS involves a regression model based on a weighted least 223 
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squares method that uses a local point of interest and assigns more weights to neighboring points 224 

near the point of interest and less weights to points farther away. The regression model can be 225 

linear or polynomial. Locally quadratic fitting performs better when the regression surface has 226 

substantial curvature (Cleveland and Devlin, 1988). LOWESS requires a weight function and 227 

fraction of points in the neighborhood (f) parameter (neighborhood size). Here, the weight 228 

function is a tri-cube weight function, and the weight for any specific point in the neighborhood 229 

is determined by the distance between that point and the point of interest.  230 

Here, we use the locally weighted quadratic fitting. In this procedure, we let 0<f≤1 and let r be fn 231 

rounded to the nearest integer (n is total data points). The integer r is the number of points used 232 

to estimate the point of interest ti. Let dmax be the time difference between ti and the rth nearest 233 

neighbor. For each ti, the weight function W are defined for all tk (k = 1, …, n) as follows 234 

 max

3
3

max

,0)(1)( dttfortw
d

tt
tw ikit

ik
it kk














 
  235 

For each ti, the estimates )(ˆ0 it , )(ˆ1 it , and )(ˆ2 it  of )(0 it , )(1 it , and )(2 it are fitted by 236 

method of weighted least squares with weight function W to minimize 237 

22

210
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 238 

Thus, the fitted value 
it

Ŷ  at time ti using locally weighted quadratic fitting is  239 

2

210 )(ˆ)(ˆ)(ˆˆ
iiiiit tttttY

i
   240 

As the fraction of points in the neighborhood (f) increases, more points will be included in the 241 

regression of the point of interest and the regression will become more global. More detailed 242 

information about LOWESS can be found in Cleveland (1979) and Cleveland and Devlin (1988). 243 

Setting the parameter f is a critical issue in LOWESS. Cross validation provides an appropriate 244 
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method to determine the optimum parameter f. In this study, f was determined by the k-fold cross 245 

validation method, which is a data self-adaptive automatic method (Stone, 1974). The original 246 

sample data are randomly partitioned into k mutually disjoint equal-sized groups. Each time, one 247 

group is left out for validation and the remaining k-1 groups are used as training data for 248 

prediction. With k iterations, all sample data are used for both training and validation and each 249 

group is used once as validation data. The averaged prediction error (mean absolute error) of k 250 

times is used for cross-validation statistics. The parameter f with the minimum averaged 251 

prediction error is used as the optimum parameter. The R function “crossval” in the R package 252 

“bootstrap” was used for cross-validation implementation for LOWESS method (Efron and 253 

Tibshirani, 1993) 254 

2.3.1.5 Smoothing spline model 255 

Spline functions have been applied extensively for interpolation. A kth order spline is a 256 

piecewise continuous polynomial function of degree k and has continuous derivatives of order 1, 257 

2, … and k-1, at its knot points. Splines are superior to polynomials for approximating disjointed 258 

or episodic functions, where ordinary polynomials are inadequate (Cook and Peters, 1981). 259 

Reinsch (1967) developed an algorithm for spline smoothing to extract the underlying function 260 

from unwanted experimental noise. Spline smoothing uses a penalized least squares criterion to 261 

control for overfitting by shrinking the effect of the standard sum-of-square functions for a 262 

regression spline and adding the roughness “penalty” regularization function (differentiable 263 

function) (Eubank, 1988).  264 

Cubic smoothing spline model is the most commonly used method and will be used in this study. 265 

Let 
itY be crop yield at time ti, modeled by function ),,2,1()( nitfY iti

 . The smoothing 266 

spline estimate f̂  of the function f is defined to minimize 267 
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The smoothing parameter λ is a tuning parameter governing the trade-off between the goodness 269 

of fit and smoothness of the curve. As λ approaches zero, the smoothing spline emphasizes 270 

goodness of fit and the curve converges to the traditional interpolation spline passing through 271 

each of the data points. As λ approaches positive infinity, the smoothing spline emphasizes 272 

smoothness and the curve converges to a straight line of ordinary linear regression (Eubank, 273 

1988). The most important issue for spline smoothing is to find an objective criterion for 274 

choosing the optimum value of the smoothing parameter λ. Wahba and Craven (1978) proposed 275 

the generalized cross validation (GCV) method for spline smoothing; it is the method currently 276 

recognized as optimal for parameter selection. 277 

2.3.1.6 Empirical mode decomposition model 278 

Huang et al. (1998) have developed an empirical mode decomposition (EMD) method for 279 

analyzing nonlinear and non-stationary data. The method decomposes a complicated data set into 280 

different “intrinsic mode functions” (IMF) based on the local characteristic time scale of the data. 281 

The method is intuitive, direct, and adaptive (Huang et al., 1998). An intrinsic mode function 282 

satisfies two conditions: (1) in the whole data set, the number of extrema and the number of zero 283 

crossings must be either equal or differ at most by one; (2) at any point, the mean value of the 284 

envelope defined by the local maxima and the envelope defined by the local minima is zero 285 

(Huang et al., 1998). The IMFs represent the oscillation mode embedded in the data and are 286 

extracted systematically in a sifting process. The sifting process identifies the local maxima and 287 

minima to extract from the highest-frequency oscillation to lowest-frequency oscillation 288 

systematically until the residual component becomes a constant, a monotonic function where no 289 

more complete IMF can be identified, or the residue becomes so small that it is less than the 290 
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predetermined value of substantial consequence (Huang et al., 1998; Wu et al., 2007). Finally, a 291 

data set will be decomposed approximately into log2n IMFs, with n being the number of data 292 

points (Wu et al., 2007) and the decompose equation is as follows:  293 

m

m

j

j rctY 
1

)(  294 

Where m is the total number of IMFs; cj is the jth IMF; and rm is the residual component. 295 

More detailed information about EMD method can be found in Huang et al. (1998), Huang et al. 296 

(2003) and Wu and Huang (2004).  297 

2.3.2 Decomposition model 298 

After simulating the trend by appropriate statistical models, a decomposition model is applied to 299 

remove the simulated trend and obtain the detrended data. There are two methods to do this: 300 

The simplest method is an additive decomposition model. Generally, the composition of 301 

fluctuations and trend is assumed to be additive. The detrended data result from subtracting the 302 

values of the trend line from the original data, creating a time series of residuals. The unit of the 303 

residuals is the same as the original data. An additive decomposition model is appropriate when 304 

the variation is relatively constant over time. 305 

Another method is a multiplicative decomposition model, wherein the detrended data result from 306 

computing the ratio of the original data to the values of the trend line. The detrended data are 307 

dimensionless and indicate percentage differences compared to the values of the trend line. A 308 

multiplicative decomposition model is appropriate when the variation is not constant through 309 

time. The multiplicative decomposition model can remove the variance associated with the trend. 310 

2.4 Quantitative measures of trend fitting 311 
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Six basic quantitative measures of trend fitting were used in this study: root mean square error 312 

(RMSE), mean absolute error (MAE), coefficient of efficiency (E), index of agreement (d), 313 

modified coefficient of efficiency (E1), and modified index of agreement (d1). 314 

Root mean square error (RMSE) and mean absolute error (MAE) have been widely used as 315 

standard statistical metrics to measure model performance. Nash and Sutcliffe (1970) defined the 316 

coefficient of efficiency (E) as the proportion of the initial variance accounted for by a model. It 317 

ranges from minus infinity to 1.0 with higher values indicating better agreement. Willmott (1981) 318 

proposed the index of agreement (d) to represent 1 minus the ratio between the sum of squared 319 

errors (SSE) and the “potential error” (PE). It ranges from 0.0 to 1.0 with higher values 320 

indicating better agreement between the model and observation. Both d and E represent an 321 

improvement over the widely used coefficient of determination (R
2
). R

2
 describes the degree of 322 

collinearity between the observed and simulated values, but this measure is limited by its 323 

insensitivity to additive and proportional differences between observations and model 324 

simulations (Legates and Davis, 1997; Legates and McCabe, 1999; Willmott, 1981). Both d and 325 

E can detect differences in the observed and model simulated means and variances. 326 

Further, Willmott (1984) and Legates and McCabe (1999) argued that both d and E are sensitive 327 

to outliers because errors and differences are inflated when their values are squared. Based on 328 

original d and E, Willmott et al. (1985) and Legates and McCabe (1999) proposed a more 329 

generic form of d and E and advocated the use of the modified index of agreement (d1) and the 330 

modified coefficient of efficiency (E1). The advantage of d1 and E1 is that the errors and 331 

differences are given appropriate weighting, not inflated by their squared values (Legates and 332 

McCabe, 1999). 333 

Table 1. Equation of quantitative measures of trend fitting 334 
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Where yi represents the ith observed value; iŷ  represents the ith model simulated value; y  represents the observation mean 

for the entire period. 

 

 335 

3. Results 336 

3.1 Detrending methods comparison 337 

3.1.1 Trend simulation methods comparison 338 

Fig. 1 shows the corn yield time series from 1895 to 2014 in Illinois and South Carolina, as well 339 

as the trend simulation results by six models. Both the corn yield time series in Illinois and South 340 

Carolina show a prominent nonlinear increasing trend dominates the long-term crop yield time 341 

series. The trend is largely due to technological development and increasing inputs, and is most 342 

pronounced after 1950. The series also show high-frequency variation, largely due to weather-343 

related factors, that increases with time. In order to isolate the interannual variability, it is 344 

necessary to remove the technology trend from the time series to standardize crop yield. 345 

Because the technology trend is nonlinear, a simple linear regression model does not explain the 346 

change of corn yield in Illinois (Fig. 1-1(a)) and South Carolina (Fig. 1-2(a)) well and is not 347 

logical or reasonable for detrending long-term crop yield data. A quadratic trend improves the 348 

relationship in Illinois (Fig. 1-1(b)), but it still cannot capture the slowly increasing trend from 349 
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1895 to1960 in South Carolina (Fig. 1-2(b)). A second order polynomial regression model fit the 350 

trend well for several states (e.g., Idaho, Illinois, Maryland, Michigan, and Minnesota), but not in 351 

many others. These pre-selected models lack sufficient flexibility to remove the non-stationary 352 

and nonlinear trend for all states and all counties. 353 

Visual inspection of corn yield suggests that a 20-year CMA model is necessary to smooth the 354 

irregularities in the time series (Fig. 1-1(c) and Fig. 1-2(c)). A moving average model requires a 355 

predetermined time span to do the moving average operation. However, the determination and 356 

the choice of time span for a moving average model is subjective. In addition, a boundary 357 

problem arises when using the CMA model. A 20-year CMA model requires 10-years of data 358 

before and after the year of interest. As the data point moves to the earliest or latest years, the 359 

first 10 and last 10 data points, respectively, lack enough data to be estimated and are assigned as 360 

missing values (Fig. 1-1(c) and Fig. 1-2(c)). Furthermore, one missing value occurring in the 361 

time series can cause 20 additional data points to be assigned as missing values for the moving 362 

average trend curve. But, even if no missing values exist in the time series, a 20-year CMA still 363 

sacrifice 20 data points at the earliest and latest data points of the time series. The centered 364 

moving average model is of no use or biased near the boundary of the time series. 365 

 366 
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 367 

Fig. 1. Trend simulation methods comparison: (a) simple linear regression model; (b) second order 368 

polynomial model; (c) centered moving average model of 5-year, 10-year, 15-year, and 20-year timespans; 369 

(d) locally weighted regression model; (e) smoothing spline model; (f) empirical mode decomposition 370 

model (the upper six figures are Illinois and the lower six figures are South Carolina; data: corn yield 371 

from 1895 to 2014 in Illinois and South Carolina) 372 
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 373 

By contrast, LOWESS models can be fitted with neighboring points near the boundary of the 374 

time series and the boundary points can be estimated instead of being assigned as missing values. 375 

LOWESS models can be either linear or polynomial. Locally weighted quadratic fitting performs 376 

better when the regression surface has substantial curvature (Cleveland and Devlin, 1988), like 377 

that of corn yield through time. Here, we use locally weighted quadratic fitting in this study. In 378 

the LOWESS method, choice of the parameter f (fraction of points in the neighborhood) is very 379 

critical. As f increases from 0.1 to 1, the scale of the trend changes from local to global (Fig. 1-380 

1(d) and Fig. 1-2(d)). With an f parameter of 1, LOWESS includes all of the data in the time 381 

series, and it is actually a polynomial regression model performed on the whole time series 382 

(Cleveland and Devlin, 1988). Here, we used a ten-fold cross-validation process to optimize the 383 

choice of f  (Breiman and Spector, 1992). The ten-fold cross-validation process was repeated 100 384 

times and the average parameter f was used as the optimum value for each state and county. One 385 

assumption of the LOWESS methodology is that the fitted function should follow the underlying 386 

patterns of the data providing a nearly unbiased estimation (Cleveland and Devlin, 1988). Visual 387 

inspection for trending fitting of state-level corn yield demonstrates that the fitted trend using the 388 

optimum f parameter corresponds to the underlying time series pattern, such as Illinois (Fig. 1-389 

1(d)) and South Carolina (Fig. 1-2(d)). 390 

For the smoothing spline model, we used generalized cross validation (GCV) to optimize the 391 

smoothing parameter. The trend curve simulated by the smoothing spline model also follows the 392 

corn yield time series closely in Illinois (Fig. 1-1(e)) and South Carolina (Fig. 1-2(e)), and this 393 

model performs well for most corn yields at the state level. However, for counties with shorter 394 

records, the fitted smoothing spline passes through all data points and converges to a traditional 395 
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interpolation spline that no longer smooths the data, losing its ability to fit the long-term trend 396 

caused by technological advances (examples of four counties are shown in Fig. 2). 397 

 398 

Fig. 2. Smoothing spline trend simulations for (a) Butte, California; (b) Lake of the Woods, Minnesota; (c) 399 

Wyoming, Pennsylvania; (d) Fairfield, South Carolina (smoothing spline converges to traditional 400 

interpolation spline) 401 

 402 

For the empirical mode decomposition (EMD) model, the residual component is a monotonic 403 

function or a function containing only a single extrema from which no more oscillatory IMFs can 404 

be extracted (Huang et al., 1998). The residual component can represent the overall trend, which 405 

is determined intrinsically and is neither linear nor quadratic (Wu et al., 2007). The definition of 406 

the residual component in EMD method is almost identical to the definition of the trend when the 407 

data span in the trend covers the whole data length (Wu et al., 2007). Visual inspection suggests 408 

that the residual component of an EMD model simulated the trend well following the intrinsic 409 

data pattern through time in 35 out of 48 states, such as Illinois (Fig. 1-1(f)) and South Carolina 410 

(Fig. 1-2(f)). In another 11 states, the trend should include the residual component and the 411 
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lowest-frequency IMF that contains physically meaningful information. In the remaining two 412 

states, the trend should include the residual component and the two lowest-frequency IMFs to 413 

represent the trend. 414 

3.1.2 Quantitative measure of trend fitting results 415 

Table 2. Quantitative measures of trend fitting results 416 

 RMSE MAE E d E1 d1 

Simple Linear Regression 

Model 
1219.19 1041.38 80% 94% 57% 77% 

Second Order Polynomial 

Regression Model 
743.37 545.49 92% 98% 77% 88% 

20-year Centered Moving 

Average Model 
554.31 375.42 93% 98% 81% 90% 

Locally Weighted Regression 

Model 
559.56 374.85 95% 99% 84% 92% 

Spline Smoothing Model 531.85 357.10 95% 99% 84% 92% 

Empirical Mode 

Decomposition Model 
592.36 403.80 94% 98% 82% 91% 

Notes: the units of RMSE and MAE are the same with corn yield: kg/ha; the units of E, d, E1, and d1 are percent. 

 417 

Table 2 shows the average values of the 48 states for six quantitative measures of trend fitting to 418 

provide an overall perspective of trend fitting for those six trend simulation methods. For state-419 

level data, in all six measures, simple linear regression models are the poorest fitting model, 420 

while second order polynomial regression models provide a closer fit to the observed data when 421 

compared with simple linear regression models. The other four methods all perform much better 422 

than simple linear regression models and second order polynomial regression models, fitting 423 

state-level corn yield with similar accuracy. 424 

The modified index of agreement (d1) ranges from 0 to 1.0, while modified coefficient of 425 

efficiency (E1) ranges from minus infinity to 1.0. The modified index of agreement (d1) is more 426 
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convenient for interpretation (Legates and McCabe, 1999), and thus we calculated the county-427 

level d1 to compare the county-level trend fitting for different methods (Fig. 3). EMD model is 428 

not included in the county-level analysis, because the choices of residual components and the 429 

IMFs of EMD model to fit the trend are not consistent for different counties and EMD model 430 

needs visual inspection and manual applications, which is not practical for thousands of counties. 431 

Further, the counties where the smoothing spline converges to an interpolation spline will be 432 

excluded from calculation of d1 because an interpolation spline connects all data points and 433 

renders a useless fit for the technological trend (Fig. 3). The county-level d1 for the other four 434 

methods are shown in (Fig. 3(a-d)); those for the smoothing spline are shown in (Fig. 3(e)) where 435 

about 600 counties are excluded because of this convergence. Fig. 3 shows that the d1 of locally 436 

weighted regression models are higher than with the simple linear regression models, second 437 

order polynomial models, and 20-year centered moving average models. The d1 of locally 438 

weighted regression and smoothing spline are close. Given the limitation of smoothing spline 439 

model on shorter records, locally weighted regression models represent the best trend fit for 440 

county-level corn yield data in terms of modified index of agreement (d1). 441 
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 442 

Fig. 3. County-level modified index of agreement (d1) in the United States for five trend simulation 443 

methods: (a) simple linear regression model; (b) second order polynomial regression model; (c) 20-year 444 

centered moving average model; (d) locally weighted regression model; (e) smoothing spline model 445 

 446 

3.1.3 Decomposition models comparison  447 

The studies conducted by Hlavinka et al. (2009), Quiring and Papakryiakou (2003), Trnka et al. 448 

(2007), Goldblum (2009) and Mishra and Cherkauer (2010) assumed an additive composition of 449 

fluctuations and trends, and used residuals subtracted from the regression line as the detrended 450 

data to represent crop departure from normal. However, we found evidence to suggest that this 451 

may not be a sound assumption for long-term corn yield time series in this study. 452 

After applying an additive decomposition model to remove the trend from the time series, the 453 

variance of detrended corn yield in both Illinois and South Carolina increases with time (Fig. 4). 454 

As corn yield and associated variance increase with time, the variance of the differences between 455 

original crop yield and simulated trend also increases. Thus, a multiplicative decomposition 456 
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model is more appropriate because the variance of the detrended data is adjusted to the 457 

magnitude of crop yield, becoming more stationary through time (Fig. 4). Here, detrended crop 458 

yields minus one represent the percentage lower or higher than normal crop yield conditions (i.e. 459 

extreme events don’t occur); these values are denoted as “crop yield anomalies”. Therefore, after 460 

implementing an appropriate trend simulation method, we applied a multiplicative 461 

decomposition model to detrend corn yield. 462 

 463 

Fig. 4. Comparison of additive decomposition model and multiplicative decomposition model (the upper 464 

two figures are Illinois and the lower two figures are South Carolina; data: corn yield from 1895 to 2014 465 

in Illinois and South Carolina; trend simulation method: locally weighted regression model)  466 

3.2 Final detrending model choice 467 

Our choice of a detrending model is based on performance, efficiency, and robustness. The 468 

analysis above demonstrates the sub-par performance of the simple linear regression and second 469 

order polynomial regression models. Further, the centered moving average model is of no use 470 

and/or is biased near the boundaries of the time series, as well as being strongly limited by 471 



25 

 

missing values. The empirical mode decomposition model performs well for state-level corn 472 

yield data, but, as discussed in section 3.1.1, the choice of the residual component and the IMFs 473 

is not consistent across the United States, requiring visual inspections and manual applications. 474 

Employing EMD to detrend multiple crop types in thousands of counties is time consuming and 475 

not practical. The smoothing spline model performs well for state-level corn yield where the 476 

records are long, but it does not perform well for shorter records. For counties with shorter data 477 

records (e.g., fewer than 60 years), the smoothing spline converges to interpolation spline and 478 

connects all data points together, rendering it useless for this application (Fig. 2). The spline 479 

smoothing model is not robust to data with shorter records for fitting the trend caused by 480 

technological advances. The locally weighted regression model can automatically follow the 481 

underlying pattern of the non-linear and nonstationary corn yield time series and provide good 482 

trending fitting for both state-level and county-level corn yield. Thus, the locally weighted 483 

regression model coupled with multiplicative decomposition model is the preferred method here 484 

to detrend the corn yield for both state-level and county-level, and is then employed in the 485 

following analysis. 486 

3.3 Correlation analysis between detrended crop yield and multiple drought indices 487 

Corn has five main phenological stages: emerged, silking, dough, dent, and mature (USDA, 488 

2009), and yield sensitivity to drought varies with stages. Corn is most sensitive to water stress 489 

during the early reproductive stage (tasseling, silking, and pollination) (Kranz et al., 2008). 490 

Droughts occur during silking period tend to desiccate the silks and pollen grains, causing poor 491 

pollination and resulting in the greatest yield reduction (Berglund et al., 2010; Kranz et al., 2008). 492 

We performed correlation analysis to examine the best drought indices to correlate with corn 493 
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yield anomalies for spatial visualization purpose in section 3.4 and to demonstrate the spatial 494 

patterns of the correlations.  495 

3-month SPI in August and Z-index in July show the highest correlation with corn yield 496 

anomalies among all of the drought indices (Fig. 5). Since the 3-month SPI in August is 497 

calculated from June, July, and August precipitation totals, it corresponds most closely to 498 

tasseling, silking, blister, milk, dough and dent stages. The phenology of corn explains why corn 499 

yield anomalies correlate most closely with 3-month SPI in August. As the time scale of SPI 500 

increases from 3-month to 24-month, the correlation coefficient decreases (Fig. 5). This indicates 501 

that time scale of 3-month for SPI is appropriate for agricultural drought monitoring. 502 

For shorter time scales drought indices (1-month SPI, 2-month SPI, and Z-index), the corn yield 503 

anomalies are most highly correlated with drought indices in July (Fig. 5), suggesting that July is 504 

the most critical single month when averaged across the United States, because July 505 

approximately corresponds to the early reproductive stage (tasseling/silking) in most states. In 506 

some southern states (e.g., Texas), where corn planting and harvesting time are earlier (USDA, 507 

2010), corn yield anomalies are most highly correlated with 1-month SPI, 2-month SPI and Z-508 

index in June. 509 

PDSI, PHDI, and PMDI show the highest correlation with corn yield anomalies in August among 510 

all seasons and perform better than the SPI at 6-month and longer time scales, but are inferior to 511 

the SPI at 3-month and shorter time scales as well as to the Z-index (Fig. 5). 512 

The two maps showing the highest correlations (Z-index in July and 3-month SPI in August), 513 

indicate that the corn yield anomalies are more highly correlated with drought intensity east of 514 

100˚ W meridian than west of it (Fig. 5). This occurs because areas west of the 100˚ W meridian 515 
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typically use irrigation (Schlenker and Roberts, 2009). Those areas east of 100˚ W meridian 516 

usually do not, leaving them more susceptible to drought.  517 

 518 
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Fig. 5. Correlation maps of multiple drought indices by month with corn yield anomalies at state level 519 

(For example, the map in the second row and second column shows correlations between the 2-month SPI 520 

in July and corn yield anomalies at state level) 521 

 522 

3.4 Spatial visualization of drought impact on crop yield 523 

We used this detrending approach to compare corn yield responses to drought across six major 524 

drought years: the droughts of 1936, 1954, 1980, 1988, 2002, and 2012. We used only counties 525 

in the conterminous United States with at least 30 years of data (counties in white are either 526 

counties do not produce corn, or counties with missing data for a particular drought, or counties 527 

with too short records). The corn yield time series for each state and each county was detrended 528 

separately using a locally weighted regression model coupled with a multiplicative 529 

decomposition model. The values shown in maps (Fig. 6) are corn yield anomalies. Since the 3-530 

month SPI in August and the Z-index in July show the highest correlation with corn yield 531 

anomalies, we used the gridded 3-month SPI in August calculated from the 4-km gridded PRISM 532 

data as a reference of drought severity. 533 

The maps of state-level corn yield anomalies generally correspond well with the county-level 534 

maps (Fig. 6). The county-level maps clearly show more detailed crop information than the state-535 

level maps (Fig. 6). The state-level and county-level maps complement each other to reflect crop 536 

yield anomalies information.  537 

The crop yield anomalies were calculated by adjusting to the magnitude of the crop yield itself, 538 

which indicates percentage lower or higher than the crop yield of normal conditions. This 539 

methodology lets us compare drought impacts across space and time. The 1936 drought had the 540 

greatest impact on corn yield in the Midwest and parts of West South Central, where corn yields 541 

fell by 50% and more (Fig. 6). The impact of the 1954 drought showed up mainly in West South 542 
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Central, East South Central, and South Atlantic, where the corn yield was reduced by 40% to 50% 543 

(Fig. 6). The 1980 drought was similar in both magnitude and spatial extent to the 1954 drought. 544 

The 1988 drought’s impact on corn yield was most evident in the Midwest, East South Central, 545 

and South Atlantic, where the corn yield reduced by 30% to 40% (Fig. 6). The 2002 drought had 546 

its greatest impact in the Middle Atlantic and South Atlantic, where the corn yields of Maryland, 547 

New Jersey, Ohio, Pennsylvania, Delaware, South Carolina, and Virginia were reduced by 30% 548 

to 40% (Fig. 6). The impact of the recent 2012 drought was most strongly seen in the corn yield 549 

in the Midwest and East South Central, where the corn yields were 30% lower than normal in 550 

Illinois, Indiana, and Tennessee, and were 40% to 50% lower in Kentucky and Missouri (Fig. 6).  551 

Comparisons between August 3-month SPI and corn yield anomalies for these six severe 552 

droughts show a strong correspondence between dryness and lower-than-normal corn yield for 553 

areas east of 100˚ W, however, this correspondence is weak for areas west of 100˚ W because of 554 

agricultural irrigation (Fig. 6). The areas where corn yield greatly reduced during these six 555 

droughts correspond to the areas that experienced severe drought without access to irrigation. 556 

The magnitudes of corn yield reductions in 1936, 1954 and 1988 correspond to the impacts 557 

reported in the literature cited in the introduction part (NOAA, 2003; Rosenzweig et al., 2001; 558 

Warrick, 1984). This result partially illustrates the effectiveness and robustness of the selected 559 

detrending method. 560 
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 561 

Fig. 6. Spatial visualization of state-level and county-level corn yield anomalies accompanied with 562 

gridded August 3-month SPI in the United States for six historical drought years: 1936, 1954, 1980, 1988, 563 

2002, and 2012 (column (a): gridded August 3-month SPI calculated from PRISM data; column (b): state-564 

level corn yield anomalies; column (c): county-level corn yield anomalies) 565 

 566 

4. Discussion and conclusions 567 

This study identifies the appropriate data self-adaptive detrending method to standardize and 568 

detrend the corn yield by comparing multiple detrending methods, in order to compare drought 569 
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impacts on corn across both space and time. We compared six trend simulation methods using 570 

six quantitative measures of trend fitting and found that the simple linear regression and second 571 

order polynomial regression models have the poorest fit. Of the other four methods, the centered 572 

moving average model is limited by its boundary problems. Employing the EMD model to 573 

detrend crops for thousands of counties is time consuming and impractical because the choices of 574 

the residual component and IMFs to represent the trend are not consistent for different counties 575 

and different states and require visual inspections and manual applications. Smoothing spline 576 

models do not perform well for counties with shorter data records (e.g., fewer than 60 years) and 577 

in this case, a smoothing spline model connects all data points and converges to a traditional 578 

interpolation spline, which is useless in trend fitting for this application. We also compared two 579 

decomposition models and found that multiplicative decomposition model to be more 580 

appropriate for detrending crop yield because the variance of the detrended crop yield is adjusted 581 

according to the magnitude of crop yield and becomes more stationary over time. Thus, the 582 

locally weighted regression model, coupled with multiplicative decomposition model, is the most 583 

appropriate data self-adaptive method to detrend the crop yield. 584 

This study represents the first long-term spatial visualization of drought impact on corn across 585 

large regions and identifies spatial patterns of the vulnerability of corn to drought in United 586 

States. Our approach standardized the corn yield allowing a quantitative measure of relationship 587 

between drought and corn yield and spatial visualization of drought impacts on corn yield. We 588 

performed correlation analysis between corn yield anomalies and multiple drought indices during 589 

growing seasons. Z-index in July and 3-month SPI in August are the best two drought indices to 590 

correlate with corn yield anomalies among all of the drought indices. The corn yield anomalies 591 

are more highly correlated with drought indices for states east of the 100˚ W meridian than the 592 
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west of it. Six major drought years (1936, 1954, 1980, 1988, 2002, and 2012) were selected for 593 

the spatial visualization of drought impact on corn yield. Gridded 3-month SPI calculated from 594 

PRISM data were used to represent drought severity. The state-level and county-level maps of 595 

corn yield anomalies can capture the spatial variability of lower-than-normal corn yield caused 596 

by droughts. Lower-than-normal corn yield corresponds strongly with dryness east of 100˚ W, 597 

but weakly to its west. The impacts of the six historical droughts on corn yield were described 598 

and compared, and generally corresponded with what were reported in literature. This also 599 

illustrates the effectiveness and robustness of the selected detrending method. 600 

Our detrending approach is not limited to corn and drought studies, but relevant to other crops 601 

and other natural hazards as well. We applied the same approach for soybeans. Strong 602 

correspondence was shown between dryness and lower-than-normal soybean yield in 1980 603 

(Appendix A, Fig. A3). The 1980 drought showed its impact on soybean yield mainly in West 604 

South Central, East South Central, and South Atlantic and Kansas (Appendix A, Fig. A3). This 605 

approach is also not limited to drought analysis. Crop yield anomalies can occur for reasons 606 

other than drought (e.g., flooding, extreme short-term weather events, pest infestation, and 607 

disease). This study successfully separated out environmental and weather factors from other 608 

technological factors. By identifying crop yield anomalies, our approach can also be used, for 609 

example, to assess the effect of excessive moisture and flooding on crop yield. The Great Flood 610 

of 1993, occurring from April to September along the Mississippi and Missouri rivers and their 611 

tributaries, killed at least 48 people and caused approximately $20B in flood-related damages 612 

(Johnson et al., 2004). Corn yields in Midwest along the Mississippi and Missouri rivers were 613 

lower than normal (Fig. 7), mainly because of the flooding. The August 3-month SPI showed 614 

that, in contrast with the excessively wet conditions in Midwest, the Southeast experienced a 615 
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severe drought (Fig. 7). The corn yields in the Southeast were also lower than the normal (Fig. 7), 616 

mainly due to the drought and heat wave. 617 

 618 

Fig. 7. Spatial visualization of state-level and county-level corn yield anomalies accompanied with 619 

gridded August 3-month SPI in 1993: (a) gridded August 3-month SPI in 1993 calculated from PRISM 620 

data; (b) state-level corn yield anomalies in 1993; (c) county-level corn yield anomalies in 1993 621 

 622 

Our approach provides one way to assess the impact of drought on crop yield, which could be 623 

useful in helping policy makers and stakeholders develop effective risk adaptation strategies and 624 

management plans to alleviate the impact of extreme weather on the agricultural sector. 625 

Furthermore, others have demonstrated the potential for crop production and yield prediction 626 

combining climate variables from GCMs and indices of observed antecedent sea surface 627 

temperature, warm water volume, and zonal wind patterns (Koide et al., 2013). Other example of 628 

locally weighted regression models have demonstrated skills for short-term forecasting (Lall et 629 

al., 2006). The method applied in this paper could also be used for short-term forecasts on the 630 

effect of technological changes on crop yield. As GCMs begin to demonstrate some success in 631 

decadal prediction (Meehl et al., 2014; van Oldenborgh et al., 2012), our method could be 632 

combined with such forecasts for predicting crop yield. Finally, the crop yield anomalies derived 633 

by this approach can also be used in the analysis of climate change impacts on agriculture. 634 
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Appendix A. Supplementary figures 642 

 643 

Fig. A1. Corn yield time series from 1895 to 2014 in Arizona, Iowa, Nebraska, South Carolina, and Texas 644 

(Units: kg/ha) (Corn yield data were obtained from USDA’s National Agricultural Statistics Service; corn 645 

yields are calculated from corn production for grain divided by corn area harvested for grain.) 646 

 647 
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 648 

Fig. A2. Spatial visualization and comparison of original corn yield in 1954 and 2012 (Units: kg/ha) 649 

 650 

 651 

Fig. A3. Spatial visualization of state-level and county-level soybean yield anomalies accompanied with 652 

gridded August 3-month SPI in 1980: (a) gridded August 3-month SPI in 1980 calculated from PRISM 653 

data; (b) state-level soybean yield anomalies in 1980; (c) county-level soybean yield anomalies in 1980 654 

 655 
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